Illicit Financial Flows in Southern Africa: Exploring Implications for Socio-Economic Development

Vusi Gumede *

Abstract

This article views Illicit Financial Flows (IFFs) as any illegal and corrupt practice done to acquire money without due process that is in line with international financial and trade regulatory frameworks. Based on this working definition, the article explores IFFs in the mining sectors in four countries (i.e. the Republics of Botswana, Namibia, South Africa and Zimbabwe) with a specific focus on socio-economic implications for communities in the mining or former mining areas. Measurement issues are also attempted. Indeed, IFFs have severe implications for the communities (as it is for countries). Although the results are mixed, regarding the quantification of IFFs in the mining sector, it is clear that IFFs have major negative effects on welfare and political stability. Estimates show high levels of IFFs through trade mis-invoicing in all the four countries for the mining sector.

1. Introduction

Illicit Financial Flows (IFFs) out of sub-Saharan Africa have been shown to surpass foreign aid inflows into the continent, according to Kar and Cartwright (2010). Research on IFFs confirm that the problem of IFFs in Africa require attention. Kar and Cartwright (2010) also indicate that if funds ‘lost’ through IFFs were to be reinvested to the African continent, the quest and scramble for Foreign Direct Investment (FDI) on the continent would not be needed. The IFFs and capital flight literature confirms that the IFFs levels are high. What is often not examined in the literature is empirical evidence of how IFF impacts the domestic economy. Can such

* Professor at the University of South Africa (UNISA) and Director of the Thabo Mbeki African Leadership Institute. The research team that was part of the project is acknowledged and especially David Fadiran (a Postdoctoral Fellow at UNISA)
dynamics be traced to industry and commodity levels? This article attempts that over and above examining the socio-economic implications of IFFs. The research that informs this article studied four countries in Southern Africa (South Africa, Zimbabwe, Botswana and Namibia), focusing on the mining sector.

The relationship between IFFs and many other macroeconomic phenomena have been examined in the literature, such as: capital flight/IFFs and institutions, IFFs and natural resource wealth, IFFs and corruption, IFFs and debt, and many more (see Fedderke et al., 2002; Boyce and Ndikumana, 2001; Le and Zak, 2006; Fadiran and Mare, 2016; Kar and Cartwright, 2010). Most of these studies utilized IFFs and capital flight estimates that were available at the time, which mostly involved drawing from balance of payment errors. Some of these estimation techniques are no longer used. With the availability of new datasets on trade monitoring across the globe, coupled with the increased interest in the flow of illicit funds out of Africa, this article estimates of IFFs with a focus on the diamond and platinum mining sub-sectors in the four countries that the study deals with.

The next section deals with fieldwork undertaken. Then follows a section dealing with estimation techniques. Then empirics and estimation. The article then discusses implications before concluding. Indeed, IFFs have severe implications for the communities (as it is for countries). Although the results are mixed, regarding the quantification of IFFs in the mining sector, it is clear that IFFs have major negative effects on welfare and political stability. Estimates show high levels of IFFs through trade mis-invoicing in all the four countries for the mining sector.
2. Socio-economic Development Implications

Human development remains relatively low in many African countries including countries in the Southern Africa sub-region (Gumede, 2017). IFFs contribute to this because monies that should be used in advancing well-being (socio-economic development) are ‘lost’ instead of going into socio-economic development projects. Similarly, poverty and inequality remain very high in Southern Africa (Fryer and Hadisi 2016). Indeed, the study of IFFs suffers from both methodological and conceptual complexities and confusions. For instance, there has been a high tendency among scholars to confuse capital flight with illicit financial flows. Bokosi and Chikumbu (2015) argue that ‘there is often an information asymmetry between African governments and investors in the mining sector, which results in tax avoidance through the underreporting of the quantity and composition of minerals’.

This part of the article deals with data collected in selected communities in South Africa and Namibia – fieldwork could not be successfully undertaken in Zimbabwe and Botswana because necessary permissions were not secured, and the research relied on other sources and observations. It is important to indicate that the study focused primarily on government departments, mining communities and initially also intended to interview mining companies but that was not undertaken due to both logistical challenges and also a view that information from management/owners of mining companies would not have been trustworthy. For South Africa, the communities (in mining areas) where fieldwork was undertaken were in the Sekhukhune region in the Limpopo Province and Bapong community of North West Province. The Namibian community studied was based in Lüderitz which falls under the Karas Region. In South Africa
the focus was on platinum while in Namibia the attention was on diamonds. The extent of IFFs in the studied countries is large. Dikuelo (2016), for instance, argues that Botswana is among Southern African countries that are prone to illicit financial flows (IFFs) with up to P200 billion estimated to have been moved illegally over 10 years up to 2013. The Global Integrity Group (2015) also notes that between 2004 and 2013, a whopping sum of $20 billion might have been transferred out of Botswana in the form of IFFs. According to Global Financial Integrity Group (2015), Namibia lost R17 million in 2012 which has increased to around R30 million in 2015. For South Africa, the Davis Tax Committee and the South African Revenue Service estimated that South Africa lost R25 billion between 2000 and 2014. Regarding Zimbabwe, the Global Financial Integrity (2015) estimates that Zimbabwe has lost about $12 billion over the past three decades. The mining sector constituted the main avenue for illicit financial flows in Zimbabwe, with $2.7 billion lost in the mining sector as against other sectors such as wildlife, fisheries and timber sectors (where $15 million, $28 million and $17.5 million were lost respectively) (Bhebhe, 2015). Ncube and Okeke-Uzodike (2015) provides a political analysis of the high incidences of illicit financial flows in Zimbabwe. They traced the politicisation of the bureaucracy and the general public life to the incursion of endemic corruption in the country.

Overall, fieldwork confirmed that IFFs are negatively impacting socio-economic development in the communities in the mining and former mining areas. It is also interesting that there appears to be good capacities to dealing with IFFs, at least for South Africa and Namibia (the two countries that were studied in detail). Capacity referred to include (1) human capacity (trained personnel, correct skills match for analysing mining related IFF) of government institutions to detect and resolve the problems of trade mis-invoicing, regulation of transfer pricing and tax evasion in mining specifically; (2) ability of government institutions and personnel to formulate,
implement, monitor and evaluate the requisite policies to address the problem of trade mis-invoicing, regulation of transfer pricing and tax evasion in the mining sector; (3) whether the institutions collecting revenue from the mining companies have the necessary political and institutional credibility to resolve the problem of trade mis-invoicing, regulation of transfer pricing and tax evasion in the mining sector. To enhance socio-economic development in the communities, it would be important that there is better coordination among all role-players (i.e. mining companies, community leadership, government representation etc). Policy and legislation would also greatly help. For South Africa, for instance, there are social and labour plans but these are not implemented effectively at the benefit of communities. It would also be useful to having legislation that very specifically deals with IFFs.

3. Extent of IFF in the two sectors and in the four countries

With regard to platinum, in South Africa between the 2000 and 2015 a total of 323.3 billion US dollars, for the computed IFFs in real value (nominal was approximately 242 billion US dollars) is estimated. In Zimbabwe, the computed IFF obtained a value of 11 trillion US dollars in real terms (nominal obtained approximately 12 Trillion US dollars). Most of the measures recorded a negative (under-invoicing) for South Africa while it seems Zimbabwe was the opposite with a positive (over-invoicing) value.

In the diamond sector looking over the period 2000 to 2015, when considering the quantity traded differences which we consider and a non-monetary signal of IFF as well, the measure obtained -594, 1530, -252, and -93 for Botswana, Namibia, South Africa and Zimbabwe respectively. When considering the net weight and unadjusted trade value differences, which we

1 These values are based on the reported dollar price per ton for platinum, from the World Bank Global Economic Monitor (GEM) commodities database. Each kg is equivalent to 32.1507 toz. Thus each net weight reported is multiplied by the 32.1507, and further multiplied by price reported by the World Bank GEM commodities database.
also use as proxy for IFF. Approximately 12509 KGs and 19 billion US dollars for the net weight difference and trade value difference for Botswana. The values were: 108801KGs and 23 billion US dollars for Namibia; -10 million KGs, and -39.6 billion US dollars for South Africa; and 84820 KGs and -208 million US dollars for Zimbabwe. The net weight differences and the trade value difference do not always correspond together in sign, as with the Zimbabwean diamond sector.

Given that computed IFF is derived from the net weight differences in trade flows, it always corresponds no matter whether or not the difference is positive or negative. In a similar manner to the platinum sector, a negative difference signals that the values declared by the exporting country are smaller than the value declared by the importing country. This implies that a possible under-invoicing has occurred, while a positive value implies the opposite. The computed IFF for each of the four countries’ diamond sector reported US$ 364 million US$ for Botswana, 1 billion US$ for Namibia, -55 billion for South Africa and US$ 5.5 billion for Zimbabwe. The highlight is that the values for estimated IFF for all four countries in the diamond sector alone are quite alarming, especially when these numbers are considered in light of the size of each economy.

4. Estimation Techniques

The nature of IFFs is such that it is often directly or indirectly linked to a country’s natural resources such as in Nigeria, DRC, South Africa and Zimbabwe. Therefore, the availability of a new dataset such as the UN COMTRADE (United Nations Commodity Trade), the CEPII (Centre d’Etudes Prospectives et d’Informations Internationales) dataset, IMF DOTS (International Monetary Fund Direction of Trade Statistics), all make enquiry into lower levels of
trade flows feasible. Given the level of IFFs from South Africa, examining the nature of IFF within one South Africa’s richest sectors might shed some more light on the nature of IFF in SA (UNECA 2015a, 2015b). This applies to both the diamond and platinum mining sectors. In a similar manner, diamond mining accounts for major revenue sources for Botswana, Namibia and Zimbabwe.

A few disclaimers need to be highlighted regarding the estimations undertaken. Given the very nature of IFFs, they are not meant to be observed and thus any estimation thereof will have some inaccuracies. In the IFFs literature, there are three main categories namely: (1) IFFs that emanate from corruption in the form of embezzlement and bribery by officials in government; (2) IFFs that emanate from laundering of money from different forms of illegal activities and (3) IFFs that emanate from tax evasion and attempts by firms to move money between borders. The third category accounts for much of IFFs in Africa and the developing world, and is the sort of IFFs that countries worry about, since these represent funds that could be going towards growing the domestic economy (Hummels & Lugovskyy 2006; Mevel 2013).

In calculating estimates for IFFs, it is important to keep in mind that the very nature of IFFs seek to avoid observation, and as such any estimates of IFFs will be just that: estimates. With this in mind, the estimation techniques often attempt to avoid as many errors as possible so that the final estimates are not overly overestimated or underestimated. Before diving into the methodology of the estimation technique opted for, previous existing methodologies are briefly discussed. There are several methods in the literature, and some are adaptations of some of the older methods. The balance of payment approach is one of the older methods in the IFF/capital flight literature. This method was introduced by Cuddington (1987). In this approach, IFF/capital flight is calculated as the total of outflows of private short-term capital plus errors and omissions. There are obvious
problematic assumptions intrinsic in the definition, in that it assumes no other form of IFF occurs in the economy be it in the form of long-term capital flows, trade mis-invoicing. Both of which can lead to an overall ambiguity in the calculations. This is also known as the *hot money method*. The direct measure approach developed by the Bank of England (in 1989) captures IFFs as cross-border bank deposits by private residents. This method, while simple, narrow and precise, neglects the significant portion of IFFs carried out by multinational corporations and more specifically in reference to the goals of this study would be inadequate.

The indirect measurement method focuses on the difference between increases in external debt plus foreign direct investment inflows and current account deficits. This difference is then added to the increase in official reserves. This approach was at the time adopted by some studies by the World Bank, Morgan and Guaranty (1986), and Pastor (1990). The main issue with this approach is that it may overestimate IFFs since its definition in some ways is not mutually exclusive from what actual capital flows captures in the form of reserves and FDI. The residual measurement approach calculates it by taking foreign assets which do not yield any investment income. The premise being that, any differences between official and unofficial declared capital holding abroad would signal IFFs. This method is however highly dependent on the accuracy of the balance of payment accounts, which as we know for a lot of sub-Saharan African countries, macroeconomic accounting accuracy can be dicey. This method is often referred to as the *Dooley method* (Fedderke & Liu 2001; Mevel et al., 2015). Other adaptations of said methods include the capital flight estimations by Ndikumana (2001, 2012).

The trade mis-invoicing approach is one that has been there since concerns about IFFs have been raised in literature, however methods of capturing this as an estimate for IFF have improved overtime. One recent approach in this same vein is the DOTS. This measurement approach uses
trade mis-invoicing in comparing bilateral trade statistics between countries on the same trade flow. In essence, the method would look at South Africa, for example, and compare the recorded exports of diamonds by South Africa to Zimbabwe, to the recorded imports of diamonds by Zimbabwe from South Africa. This forms the foundation for the DOTS approach as well as the approach used – an adaptation of the DOTS approach in that it differs slightly in a few ways: how import records and export records of a trade flow are converted to a singular unit for consistency and comparison; how time lags and delays are computed; and the overall decomposition of the trade data to obtain the said trade mis-invoice (Mevel et al., 2015).

In more specific terms, while the DOTS informs a significant portion of the estimation technique used here, the main differentiating points lie in the fact that DOTS is captured at the country level, in which case, focusing on a particular sector, or commodity as is the case in this study would be impossible. The COMTRADE data set reports trade flows for commodities up to the 6-digit level. However, for this report, Diamond and Platinum are considered at the 4-digit level. Furthermore, in adapting the IMF DOTS methodology, one needs to be aware of the purpose for which the data was originally compiled, and that is to accurately compile balance of payment account and track trade statistics. As such, a few problems arise when employing the same methodology to track bilateral trade flows between countries. The main issue being with comparison of trade statistics captured by two different countries.

The records of trade statistics captured by the exporting country is often captured free on board (FOB). Trade values that are captured FOB implies that the cost of delivery of the goods are the importer’s responsibility once it leaves the exporters port. On the other side of the trade flow, the importer captures the trade value as inclusive of cost, insurance, and freight (CIF). This is encouraged by trade monitoring organizations, including COMTRADE by the UN as well. The
problem however arises, when the same trade data is to be used to track possible trade mis-
invoicing, which is often an avenue for IFF. There is therefore a need to find a comparative ratio
to convert the FOB inclusive trade value to CIF inclusive trade value or vice versa. While such
has been attempted by researchers in the past, its often more difficult to construct such a ratio for
sub-Saharan African countries. Not surprisingly, this has been done for many western countries,
however, most of the existing database do not show this data for the four countries considered in
this report. Another often encountered obstacle, as is the case with South Africa, is when both
the imports and exports are reported as FOB.

To circumvent this, the trade units rather than the trade values are used as proxies for trade mis-
invoicing. The COMTRADE dataset reports five different measures for each product it captures.
These are: 1.) Quantity unit code, 2.) Quantity Unit, 3.) Alternative quantity unit, 4.) Net weight
in Kilograms, and 5.) trade value in US $. When we compare these same measures between the
reported data by the exporting country and importing country, there still exists a discrepancy.
Often, the reported export quantity and weight are lower than the reported import quantity and
weight. This was the case for Botswana, South Africa and Zimbabwe, with Namibia being the
only exception among the four countries. Without adjusting the CIF trade values, the exports and
(imported from) values for each of the four countries in the diamonds goods market, and for
Zimbabwe and South Africa in the platinum goods market are presented in Figures 1 to 5.
Figure 1: Platinum Exports and Imports from trading partners, 2000-2016
Source: Various Sources, Compiled by the research team, UN COMTRADE

Figure 2: Unadjusted IFF within the Platinum commodity market, 2000-2016
Source: Various Sources, Compiled by the research team, UN COMTRADE
The figures show a significant gap between reported exports by exporting, and the bilateral reported imports from their respective trading partners, in the trade flows. Admittedly, the aggregation of the data into annual data may have contributed to this discrepancy. In the Balance of payment and trade tracking literature, studies often consider this discrepancy as either representing transportation cost (i.e. the CIF and FOB interrelations) or represents errors in accounts. In fact, it is through the computation and matching of trade flows that organizations such as the IMF, CEPII, and authors such as Hummels & Lugovsky (2006), Gaulier et al. (2008) have tried to calculate freight and transportation costs between countries. In addition to this, there are other complications that may have caused this inconsistency, which are not necessarily down to IFF alone. Such include differences in product classification, time lags between recording of exports dispatch and its delivery, exchange rate differentials, different product valuation (This is pertinent in the case of diamonds, where pricing is highly variable across time and space), etc. Therefore, one needs to keep such complications in mind when deducing IFF from such discrepancies (Hummels & Lugvoskyy, 2006; Gaulier et al., 2008; Mevel et al., 2015)
Figure 3: Diamond exports and imports from partners for South Africa & Zimbabwe, 2000-2016
Source: Various Sources, Compiled by the research team, UN COMTRADE

Figure 4: Diamond Exports and Imports from partners for Botswana & Namibia, 2000-2016
Source: Various Sources, Compiled by the research team, UN COMTRADE
5. Data and Estimates

A host of data sources were used as indicated above. Care was taken in ensuring the measurement scales are consistent throughout for all measures used. The data sources include: UN COMTRADE, WORLD BANK, IMF DOTS, the CEPII BACI database, USGS (U.S Geological Survey) Minerals Program, Publications from the chamber of mines, and departments of mineral resources of Botswana, Namibia, South Africa and Zimbabwe. The COMTRADE data provided the core variables to capture trade flows of diamond and platinum. In the COMTRADE data, there are about 5000 products, for about 200 different countries, and products are tracked up to the 6-digit level, following the harmonized system nomenclature. It currently goes as far back as 1960 for some countries, however for most SSA countries, the time
span is limited. The data also has monthly level data from 2012 and above for the four countries considered.

Deciding on a dependent variable to gauge the possible impact of IFFs from the two sectors considered, data availability was a major player. On the one hand, a measure that is able to reflect changes in the mining sector as much as possible was selected. On the other hand, this should be a measure that is readily available for the period for which IFF from these two sectors being studied. For South Africa, it may be possible to obtain such data from various sources, such as the National Treasury, and other household surveys. The problem however arises when trying to obtain similar data from the three other countries (i.e. Botswana, Namibia and Zimbabwe). This prompted the exploration of employment in the mining sector. While employment is not a direct measure of welfare relative to other possible measures, we opted for this measure as data related to it was available in all four countries. Employment (or unemployment) is the sound alternative measure in the absence of data for more direct welfare measures.

The other measure used is the political stability index from the World Bank. This measure captures the likelihood of political instability or politically motivated violence. The index is constructed using a composition of many different variables, including social unrest, internal conflict, protests and riots, intensity of violent activities of underground political organisations, etc. In South Africa, Namibia, Zimbabwe and to a lesser extent Botswana a significant portion of protests and strikes occur within the mining sectors. Therefore, the political stability measure is an ideal measure of one of the possible avenues of impact of IFFs.
To extract bilateral trade flows pertaining to diamond and platinum, a decision was made to determine what category of the two products the study would capture. At the 6-digit level, both products are often mixed with other products in the form of coating and jewellery mixes. Therefore, two commodity codes were identified to capture diamond and platinum respectively: 7102 & 7110. In the COMTRADE data, the two commodity codes are defined as: 7102 – “Natural or cultured pearls, precious or semi-precious stones, precious metals, metals clad with precious metal, and articles thereof; imitation jewellery; coin // Diamonds, whether or not worked, but not mounted or set.”; and 7110 - “Natural or cultured pearls, precious or semi-precious stones, precious metals, metals clad with precious metal, and articles thereof; imitation jewellery; coin // Platinum, unwrought or in semi-manufactured forms, or in powder form.” Therefore, only these two commodities were identified to capture trade flows in the diamond and platinum sectors of the four countries considered.

In as far as timeframe is concerned, the data goes further back than 2000, however as is often the case when dealing with aggregated data in southern Africa there are also a few missing observations, limiting the period to 2000 and latest. While the initial plan was to consider the period 2005 – 2015, the small number of cross-sections and the short time span of 11year annual data would be incapable of any trustworthy quantitative analysis. The lack of monthly data over the desired period also forced the use of annual data, albeit over a slightly longer period of 2000 to 2015. To compute a trade value that is independent of the individual countries product valuation, and hence avoid the CIF/FOB measurement debacle, the average diamond prices reported in the USGS yearbooks for diamond was used, while the platinum prices provided by the World Bank Global Economic Monitor (GEM) Commodities data base was used. To proxy for welfare, the employment by the mining sector in each country was used. Data on the
individual commodity market employment was not available for all the countries. In addition, tax
correspondence by the mining sector was also considered, however, such data was hard to come by.
Only Namibia had the requisite data for this. The graph in Figure 6, plots the computed IFFs and
correspondence of the diamond mining to Namibia’s tax revenue.

To compute the IFFs, it is recommended that the ratio of CIF/FOB should be obtained, and then
one of the two measure be converted to the other. Then only after this can the differential
between the reported bilateral trade flows be considered and estimate or signal of IFFs. The data
for calculating the CIF component of imports of FOB component of exports is available for
many countries on the BACI database. However, the data for Botswana, Namibia, South Africa
and Zimbabwe are not provided here. This makes it almost impossible to construct the CIF/FOB
ratio for these countries, due to the nature of data required for it. We therefore make use of the
quantity and net weight measures provided by COMTRADE, and obtain the average selling price
per carat of industrial diamond for the years 2000 to 2013. This was provided in the annual
yearbook reports of the USGS. This obtained average diamond price is then used to construct a
computed IFF that is free of either CIF or FOB.
This is possible, since the immediate concern of this report is not with transportation costs of trade, but rather the mis-invoicing that occurs within trade, and possible facilitation of IFF from it. This will be used as one of the proxies for IFF in our empirical analysis.

Lastly, total diamond and platinum production in each country was obtained and will be used as a control variable in the analysis. This measure was also obtained from USGS country annual reports, although the same data can also be found in the chamber of mines publications of each country. This however have numerous missing data. The USGS reports were opted for, for the sake of consistency. Although, Botswana and Namibia are not typically known as platinum producing countries, in the data these two countries still feature as top platinum producing countries in the world. The mining of platinum is however a recent phenomenon in both countries, as such data on the production, exports, and imports from the two countries are sparse.
and cover a relatively short period. Another variable considered for gauging welfare include political stability, while other variable to be controlled for or used as instruments include trade, mineral rents, natural resource rents, gross capital formation, GDP growth, diamond prices, platinum prices, total platinum production, and total diamond production.

To identify an adequate empirical estimation technique, a few things need to be considered. While we are not dealing with national accounts data, the data being collected at country level still, and as such, is prone to the same noise that often hamper macroeconomic data analysis. Such brings up issues of endogeneity. In this case, endogeneity can arise for example in the case of South Africa where IFFs is often ranked as one of the highest on the continent, that high financial flows can be jointly determined with high levels of trade as well as economic performance. Therefore, care is taken to ensure the estimation technique selected guards against the effect of this. The main differentiating factor here is that the output of the two commodities are not explicitly endogenously determined by the economy. Nevertheless, caution dictates that traditional estimation techniques such as OLS may obtain inconsistent results. This can be because of the reverse causality that is most certain to arise in such an analysis. For example, good increased production in the diamond sector can lead decreased illicit financial flows, due to increased capitalisation of the mining companies, while at the same time, decreased illicit financial flows can result to improvement in output within the same market.

The above concerns inform the estimation technique adopted. However, it should also be informed by the panel data characteristics of the data used. The first step involves testing the data set for unit roots. Unit root tests of panel data often not as accurate in comparison to unit root tests of time series data. As such there are many unit root tests in the empirical literature. For this analysis, we employ the Augmented Dickey-Fuller approach, on which most other unit root tests
are based, there we stick to this test only for the unit root analysis. The Augmented Dickey-Fuller Fisher (ADF Fisher) unit root test was developed by Maddala and Wu (1999). \(^2\) It has a Chi-Square distribution and a null hypothesis of non-stationarity, which is the presence of a unit root. The result of the Unit root test is presented in Table 1 in the Annexure. The results show that the most of the variable re non-stationary, except for a few. There are two options that need to be considered here. First differencing of the stationary variables, to remove the unit root, would result in loss of long-run information contained in the data. This may be of importance, depending on the dynamics this analysis is interested in. However, given the relatively short period covered by the data, exploring long-run dynamics of IFF would be difficult. Therefore, in such an instance, it makes sense to first difference the variable integrated of Order 1.

With these concerns in mind, it is important to determine the best estimation technique for our purpose. A possible estimation technique would be to use an instrumental variables technique to account for all the endogenous variables. This would entail a two stage least square approach. This method is based on the traditional OLS estimation approach; however, it helps account for the possible presence of reverse causality by incorporating instruments which are orthogonal in nature. Given the potential for reverse causality, leading to endogeneity in our analysis, it is best to for an estimation technique that helps circumvent this. In implementing a 2SLS analysis, the first equation captures the relationship between some welfare measure and IFFs in the form:

\[
W_t = \alpha_0 + \alpha_1 IFF_t + \beta Z_t
\]

and;

\[
IFF_t = \gamma_0 + \gamma_1 X_t + \partial Z_t
\]

\(^2\) This was first provided in the Eviews 5 econometric package.
Where W_t is the measure of welfare being tested, which in our case could be one of two measures: employment in the mining sector, and political stability. The political stability measure is captured in the World Bank Governance data base. A larger negative index indicated weak levels of political stability, while larger positive numbers indicate strong levels of political stability. The anticipated direction of influence from IFF to political stability is a negative relationship. As such the IFF coefficient should be negative. However, given the nature of IFF on the continent, the flow can be ambiguous, as IFF tends to pick up during growth spurts in the economy, while growth is expected to usher in better institutions, which should in turn reduce ease of flow of illicit funds through the economy.

6. Empirical Results

The first aspect of the analysis considers the diamond industry, examining the impact of the calculated IFF from the diamond commodity trade on political stability and employment in the mining sector. From the estimation explanations in the second section, there are four different potential measures of IFF obtained. The first two (commodity quantity and commodity net weight) are not in monetary terms, but rather in terms of commodity quantity. The second two are the reported trade values differentials in US$, and the computed value of the differential in reported trade net weight. Tables 2 and 3, present the results of regressing IFF in all four different forms on employment in the mining sector of all four countries. In Table 1, both fixed effects and random effects results are reported, as well no effects at all. The reason for this, is while there may be individual country characteristics that are interesting, the small data maybe
hinder this from being a tangible realisation. However, random effects is more suited to this situation. As the results show, in columns 3, 8, 9, and 12, the impact of IFF is significant, albeit it does not take up the negative form anticipated.

The observed positive correlation of IFF in all four different measures with better mining sector employment outcomes is not as much a puzzle, as it is a limitation of the current data to tease out effectively the role of IFF. There is an increased possibility of more IFF in the presence of increase economic performance or mining sector improvement, and this may be the effect that our analysis is picking up. To support the argument that positive coefficient may be as result of the data limitations and possible missing variable bias, the graph in Figure 7, shows a clear counter-flow in the movement of employment and IFF. If Table 3 (in the Annexure) is considered, again a positive correlation is observed between IFF measures (using random effects) and political stability. This correlation is important, because often the most significant strikes and protests in the countries like South Africa, Namibia and Zimbabwe are by workers in the mining sector. Therefore, it is possible to draw some observable correlation between the two phenomena.
A positive coefficient in this situation is not as bothersome as the correlation between employment and IFF being positive. This is because, there are many other concurrences in the macroeconomy that could have a much stronger influence on political stability than activities in the mining sector.

Moving on to the platinum commodity and trade market, Tables 4 and 5 (in the Annexure), show the results obtained. The regression in this case needs to be taken with caution, given the paucity of data for quantitative analysis. The reason being that only Zimbabwe and South Africa are active exporters of platinum, while Botswana and Namibia are yet to establish a fully-fledged platinum mining sector. Therefore, during panel analysis both countries were dropped, leaving us with just Zimbabwe and South Africa. The results in Table 4 (in the Annexure) report the possible correlations between IFF from the platinum mining activities in South Africa and Zimbabwe, and employment in these two sectors. No significant correlation was found. Ideally, a better proxy would be data that narrows the data down to employment in the platinum mining sector of each country’s economy. However, such data was not available for Zimbabwe. In South Africa where the data is available, Figure 8 plots the employment in platinum mining and IFF from platinum mining. It shows that, while there has been continuous increase in the employment numbers in platinum mining, the times where a sharp jump in IFFs from platinum mining is observed is also followed by a slight slowdown in the growth of employment (see 2004, 2012, 2014).
Figure 7: Diamond IFF (in net weight) and Employment in the Namibia
Sources, Compiled by the research team, UN COMTRADE, Namibia Chamber of Mines

Figure 8: Plot of IFF value in US$ from the platinum mining in SA, and number of employees
Source: Various Sources, Compiled by the research team, UN COMTRADE
The results in Table 5 (in the Annexure) follow the same narrative as observed with IFF in the diamond mining area, although one of the regressions (in column 1) shows a significant and negative correlation between the quantity of IFF (in platinum kilograms) and political stability. A negative coefficient implies a weakening of the political stability.

7. Implications

It is generally agreed that IFFs are a major problem in Africa. Similarly, the extractive sector is the most affected. One major implication of the study undertaken, to which this article distils, is that something needs to be done in the mining areas and for communities in the (former) mining areas. There needs to be socio-economic development projects for such communities. Another important issue is that policies and legislation need strengthening so as to ensure that communities in the (former) mining areas benefit from mining operations or at least that communities are not adversely affected. In addition, although the Namibian and South African governments have some relevant capacities, both governments do not have targeted and specialised policy and institutional approaches to quantifying and properly assessing the extent of IFFs in the mining sector. In strengthening the institutional architecture to combat IFFs in the mining sector, Southern African governments with mining operations need to jointly audit their abilities to address IFFs from multinational companies with high level of legal and accounting capacity. It will be hard, if not impossible, for individual SADC or African States to individually address IFFs. This is due to the fact that it is a multi-faceted problem involving multinational companies which might have better human capital capabilities than individual government institutions/departments. Most importantly, even if capacities, policies and laws were strengthened, it would still matter that the officials in relevant institutions and those enforcing
laws are ethical or not. It is in this context that I have been arguing for thought liberation and critical consciousness (over and above thought liberation).

Critical consciousness implies that the citizenry, say community members in this context, can be able to hold mining companies accountable – or whoever takes them for a ride. To be able to hold mining companies accountable, community members have to be critically conscious in a sense that they fully appreciate the implications of IFFs. With regards to thought liberation, similarly, community members should be primarily concerned with the advancement of wellbeing than other spoils that come with access to material wealth. The leadership at community level should be beyond reproach because attempts to corrupt them would happen. The standard of what informs development in the communities need to be about future generations. The traditional leadership, for instance, cannot collude with mining companies and corrupt government officials for their own gain if they were mentally liberated. The focus would be on schools, healthcare and other important amenities.

8. Conclusion

The article has discussed IFFs in the mining sector in Southern Africa and attempted to quantify such. As the literature says, the problem of IFFs is big. The extractives sector is the most affected. Focusing on diamonds and platinum in selected countries in Southern Africa, indeed IFFs have adverse effects in the countries but also in the socio-economic development of the communities in the (former) mining areas. Also, even though there are some capacities, institutions, policies and laws regarding the mining sector in the countries examined, there is no specific attention regarding IFFs in the mining sector – for some countries there is a general
concern or attention about IFFs broadly but not specifically focusing on the mining sector. Essentially, more needs to be done to strengthen capacities, institutions, policies and laws regarding IFFs in the mining sector, also to ensure that communities in the (former) mining areas are not adversely affected.

With regard to estimations results are mixed. There are still challenges regarding methods and methodologies. The UN COMTRADE data in conjunction with many other trade monitoring organisations, and the push for a harmonized trade monitoring nomenclature will make tracking of trade, trade values and the invoicing of trade activities less tedious. This should hamper the use of trade mis-invoicing as a major route for moving illicit funds out of African countries. Despite these initiatives, using some of the available data for quantitative individual country analysis, especially for African countries is still difficult. This is mainly due to the shortness of currently available data. The recording of data for some countries is still a challenge also.

Going forward, attempts should be made to accurately quantify transportation costs, and cost insurance freight and free on board rates for African countries would make tracking trade mis-invoicing a possibility. Such an effort would make IFFs estimation and analysis at industry level, and even commodity level achievable. The analysis carried out for this article point to a positive correlation between IFF in the diamond mining sector and two measures of welfare. However, this could be due to the limited data for such analysis, as well as crowding out of commodity and industry level dynamics by activities at the macro level.
References

The World Bank. 2016. World Bank Development Indicators.

United Nations Economic Commission for Africa. 2015(b). Illicit financial flows - why Africa needs to “track it, stop it and get it”.

Annexure

Table 1: Augmented Dickey Fuller Unit Root Test

<table>
<thead>
<tr>
<th>Variable</th>
<th>ADF</th>
<th>P-value</th>
<th>ADF 1st diff</th>
<th>P-value</th>
<th>Integration level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stat</td>
<td></td>
<td>Stat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamond Units</td>
<td>24.9286</td>
<td>0.0016</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Diamond net weight</td>
<td>21.8323</td>
<td>0.0052</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>IFF value</td>
<td>37.199</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Computed Diamond IFF</td>
<td>22.399</td>
<td>0.0042</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Total Diamond production</td>
<td>4.2189</td>
<td>0.8369</td>
<td>26.536</td>
<td>0.0008</td>
<td>1</td>
</tr>
<tr>
<td>Diamond Price</td>
<td>10.4913</td>
<td>0.2322</td>
<td>19.4958</td>
<td>0.0124</td>
<td>1</td>
</tr>
<tr>
<td>Total employment</td>
<td>6.61928</td>
<td>0.5782</td>
<td>24.0999</td>
<td>0.0022</td>
<td>1</td>
</tr>
<tr>
<td>Political stability</td>
<td>25.11</td>
<td>0.0015</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Mineral rents</td>
<td>9.42783</td>
<td>0.3075</td>
<td>39.8309</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total Natural Resources</td>
<td>12.0595</td>
<td>0.1486</td>
<td>43.9025</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Trade</td>
<td>12.1741</td>
<td>0.1436</td>
<td>33.6975</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Capital</td>
<td>7.0916</td>
<td>0.5268</td>
<td>24.4689</td>
<td>0.0019</td>
<td>1</td>
</tr>
<tr>
<td>GDP growth</td>
<td>25.4997</td>
<td>0.0013</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Platinum Unit</td>
<td>26.7791</td>
<td>0.0008</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Platinum Net Weight</td>
<td>39.7801</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Platinum IFF value</td>
<td>16.2668</td>
<td>0.0387</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Computed Platinum IFF</td>
<td>47.3801</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Platinum Produced</td>
<td>1.77029</td>
<td>0.7779</td>
<td>13.3493</td>
<td>0.0097</td>
<td>1</td>
</tr>
<tr>
<td>Platinum Price</td>
<td>6.94946</td>
<td>0.5421</td>
<td>36.9651</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2: Impact of diamond commodity market IFF on employment in the mining sector

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond Quantity</td>
<td>0.0005</td>
<td>0.0004</td>
<td>0.0004**</td>
<td>0.284</td>
<td>0.251</td>
<td>0.016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamond Net Weight</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000***</td>
<td>0.844</td>
<td>0.895</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamond IFF value</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000**</td>
<td>0.407</td>
<td>0.296</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamond IFF Value (computed)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000*</td>
<td>0.792</td>
<td>0.629</td>
<td>0.086</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamond output</td>
<td>0.0583</td>
<td>-0.0028</td>
<td>0.0086</td>
<td>0.2843</td>
<td>0.0665</td>
<td>1.2533***</td>
<td>0.0530</td>
<td>0.1131</td>
<td>0.0371</td>
<td>0.2520</td>
<td>0.0981</td>
<td>0.3149**</td>
</tr>
<tr>
<td>Diamond Prices</td>
<td>-0.0037</td>
<td>-0.0006</td>
<td>-0.0014</td>
<td>0.0009</td>
<td>0.0011</td>
<td>-0.0006</td>
<td>-0.0087</td>
<td>-0.0035</td>
<td>-0.0070</td>
<td>0.0001</td>
<td>-0.0002</td>
<td>-0.0027</td>
</tr>
<tr>
<td>Cross-Section Effects</td>
<td>None</td>
<td>Fixed</td>
<td>Random</td>
<td>None</td>
<td>Fixed</td>
<td>Random</td>
<td>None</td>
<td>Fixed</td>
<td>Random</td>
<td>None</td>
<td>Fixed</td>
<td>Random</td>
</tr>
<tr>
<td>Obs</td>
<td>37</td>
</tr>
</tbody>
</table>

*, **, and *** represent 10%, 5% and 1% levels of significance respectively. P-values are reported in italics below the coefficient. Most values are in original form, without applying natural log, because a significant percentage of these were negative observations. Therefore, some of the coefficients are relatively small.
Table 3: Impact of diamond commodity market IFF on the level of political instability

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond Quantity</td>
<td>0.001</td>
<td>0.000</td>
<td>0.0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamond Net Weight</td>
<td>0.722</td>
<td>0.846</td>
<td>0.353</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamond IFF Value</td>
<td></td>
<td></td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamond IFF Value (computed)</td>
<td></td>
<td></td>
<td></td>
<td>0.939</td>
<td>0.119</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamond output</td>
<td>-1.340</td>
<td>-0.126</td>
<td>-0.714</td>
<td>-1.329</td>
<td>-0.139</td>
<td>-1.410</td>
<td>-0.963</td>
<td>-0.125</td>
<td>-1.049</td>
<td>-1.470</td>
<td>-0.127</td>
<td>-1.430</td>
</tr>
<tr>
<td>Diamond Prices</td>
<td>0.021</td>
<td>0.789</td>
<td>0.003</td>
<td>0.017</td>
<td>0.002</td>
<td>-0.003</td>
<td>0.035</td>
<td>-0.001</td>
<td>0.026</td>
<td>-0.019</td>
<td>-0.004</td>
<td>-0.064</td>
</tr>
<tr>
<td>Cross-Section Effects Obs</td>
<td>None</td>
<td>Fixed</td>
<td>Random</td>
<td>None</td>
<td>Fixed</td>
<td>Random</td>
<td>None</td>
<td>Fixed</td>
<td>Random</td>
<td>None</td>
<td>Fixed</td>
<td>Random</td>
</tr>
<tr>
<td>Obs</td>
<td>33</td>
</tr>
</tbody>
</table>

* *, **, and *** represent 10%, 5% and 1% levels of significance respectively. P-values are reported in italics below the coefficient. Most values are in original form, without applying natural log, because a significant percentage of these were negative observations. Therefore, some of the coefficients are relatively small.
Table 4: Impact of IFFs from platinum commodity market on employment in the mining sector

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum Quantity</td>
<td>0.0008</td>
<td>-0.0002</td>
<td>0.8949</td>
<td>0.8917</td>
</tr>
<tr>
<td>Platinum Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum IFF value</td>
<td></td>
<td>0.0000</td>
<td>0.9108</td>
<td>0.7591</td>
</tr>
<tr>
<td>Platinum IFF Value (computed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum output</td>
<td>0.4452</td>
<td>0.2873</td>
<td>0.1288</td>
<td>0.0405</td>
</tr>
<tr>
<td>Platinum Prices</td>
<td>0.7139</td>
<td>0.4636</td>
<td>0.6836</td>
<td>0.9393</td>
</tr>
<tr>
<td>Cross-Section Effects</td>
<td>None</td>
<td>Fixed</td>
<td>None</td>
<td>Fixed</td>
</tr>
<tr>
<td>Obs</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

*, **, and *** represent 10%, 5% and 1% levels of significance respectively. P-values are reported in italics below the coefficient. Most values are in original form, without applying natural log, because a significant percentage of these were negative observations. Therefore, some of the coefficients are relatively small.
Table 5: Impact of IFFs from platinum commodity market on political stability

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
<th>Model 6</th>
<th>Model 7</th>
<th>Model 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum Quantity</td>
<td>-0.0187***</td>
<td>0.0002</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Platinum Weight</td>
<td>0.0000</td>
<td>0.9756</td>
<td>0.0000</td>
<td>0.0000*</td>
<td>0.0769</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum IFF value</td>
<td>0.3064</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum IFF Value (computed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum output</td>
<td>-0.3933</td>
<td>-0.4578</td>
<td>1.8443*</td>
<td>-0.2196</td>
<td>-0.0531</td>
<td>-0.0992</td>
<td>3.4628*</td>
<td>-0.2272</td>
</tr>
<tr>
<td>Platinum Prices</td>
<td>0.4435</td>
<td>0.2294</td>
<td>0.0741</td>
<td>0.4334</td>
<td>0.9363</td>
<td>0.7554</td>
<td>0.0797</td>
<td>0.4239</td>
</tr>
<tr>
<td>Cross-Section Effects</td>
<td>None</td>
<td>Fixed</td>
<td>None</td>
<td>Fixed</td>
<td>None</td>
<td>Fixed</td>
<td>None</td>
<td>Fixed</td>
</tr>
<tr>
<td>Obs</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

*, **, and *** represent 10%, 5% and 1% levels of significance respectively. P-values are reported in italics below the coefficient. Most values are in original form, without applying natural log, because a significant percentage of these were negative observations. Therefore, some of the coefficients are relatively small.